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Abstract. We present the Bethe ansatz solution for the two-channel non-magnetic hybridization impurity
model of electrons with spin and orbital degrees of freedom. It is shown that a small concentration of
such impurities enhances the effective mass of electrons. A large concentration of impurities results in a
pre-formation of superconducting and quadrupolar-order fluctuations and in the co-existence of them for
some range of parameters.

PACS. 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion phenomena – 71.27.+a Strongly
correlated electron systems; heavy fermions

There has recently been a renewed interest in heavy
fermions. While the nature of many effects for Ce- and
Yb-based heavy fermion systems with 4f1 (or 4f13) con-
figuration of 4f localized electrons is often understood,
the one for Pr-based compounds (with 4f2 configuration
of localized electrons) remains to be clarified. As an exam-
ple, one can consider the heavy fermion behavior of nor-
mal phases, superconductivity and quadrupolar ordering
in Pr-based heavy fermion compounds with the filled skut-
terudite structure (PrMe4Pn12, where Me is a transition
metal and Pn is a pnictogen) [1]. There are many experi-
mental evidences [1] that in all these compounds the main
effect is connected with the low-lying non-Kramers (non-
magnetic) doublet Γ3 (or similar non-magnetic states, like
Γ1 singlet which, together with Γ4,5 triplets, are splitted
from the 9-fold degenerate multiplet of the localized Pr3+
due to the cubic crystalline electric field (CEF) of lig-
ands [2]). Some authors mentioned non-Fermi-liquid-like
effects in such systems [3]. Moreover, several experiments
reported the unconventional strong-coupling superconduc-
tivity in PrOs4Sb12, the onset of which is due to pre-
formed pairs at temperatures higher than Tc, caused by
the hybridization of non-magnetic localized Pr states with
conduction electrons [4]. Also, it was pointed out that in
PrOs4Sb12 the quadrupolar ordering can take place [5].

Motivated by these experimental facts, in this work
we study an exactly solvable model. Our goal is to de-
scribe some of important effects caused by the hybridiza-
tion of low-lying non-magnetic states [6] of 4f2 electrons

a e-mail: zvyagin@ilt.kharkov.ua

with conduction electrons. The experiments [1,3–5] sug-
gest that two low-energy configurations of the localized
Pr3+ may be important: the doublet Γ3, or the singlet Γ1.
This is why, in our simplified model we consider two al-
most degenerate low-lying non-magnetic states hybridized
with itinerant electrons. Then a mixed valence behavior of
f orbitals results. We point out, however, that our model
is too simplified to describe the real behavior of Pr-based
compounds, and reveals only some (but not all) of their
main features. The hybridization Hamiltonian is

Hj
hyb = V

∑
m,σ,qτ

δ(x− xj)

× (
a†m,σ(x)|Q, q, τ〉〈Q′, q′τ |+ h.c.

)
, (1)

where a†m,σ(x) are creation operators for conduction elec-
trons (σ denotes a spin projection of a conduction elec-
tron), bra and kets denote low-energy states of localized
electrons of Ni f -orbitals (situated at xj positions) with
quantum numbers Q ≥ 0, which describe quadrupolar
degree of freedom, their projections q and spin projec-
tions τ . It turns out that here different bra and kets per-
tain to different values of a valence of a f -orbital. m de-
scribe degrees of freedom of conduction electrons which
interact with quadrupolar moments of a localized elec-
trons. V are hybridization elements, here supposed to be
site-independent. We also suppose the Coulomb repul-
sion of electrons at the same orbital to be very large to
exclude a multiple occupancy of each orbital [8]. Thus,
each impurity has to satisfy the completeness condition∑

q,τ |Q, q, τ〉〈Q, q, τ | + ∑
q′,τ |Q′, q′, τ〉〈Q′, q′τ | = 1. The
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energy of localized at the f -orbital electrons is described
by the Hamiltonian

Horb = εQ

∑
q,τ

|Q, q, τ〉〈Q, q, τ |+εQ′
∑
q′,τ

|Q′, q′, τ〉〈Q′, q′, τ |,

(2)
where εQ,Q′ are energies of two considered multiplets, so
that f -level energies can be parametrized by one parame-
ter θ = εQ−εQ′−µ (µ is the chemical potential). We write
the Hamiltonian of conduction electrons in the long-wave
form (the Fermi velocity is equal to 1)

Hcond = −
∑
m,σ

∫
dxa†mσ(x)

×
(

i∂x + (1/Λ)[∂2
x − V (x)]

)
amσ(x), (3)

where V (x) =
∑Ni

j δ(x−xj)(x/|x|)[δ′(x+0)+δ′(x−0)] [7].
The parameter Λ measures the curvature scale of the
spectrum [9,10]. Actually this Hamiltonian is very sim-
ilar to the Hamiltonian of reference [10] (for the isotropic
hybridization), with spin and channel (quadrupolar) de-
grees of freedom (the latters are denoted here by m, Q
and q) interchanged. Notice, that the special case, “ex-
actly” reminiscent of the situation of reference [10] cor-
responds to the case Q = 0. We can also take into ac-
count a possible direct interaction of electrons between
4f orbitals of neighboring localized 4f electrons, which
causes quadrupole-quadrupole interactions. To model the
latter we can add a direct hopping of 4f electrons between
neighboring localized orbitals (with the hopping element
being much less than the inter-shell Coulomb repulsion,
hence, in the first nonzero approximation it produces a
direct antiferroquadrupolar coupling between neighboring
localized electrons). (However, here we study only im-
purities which do not cause reflections, hence, we only
model standard Ruderman-Kittel-Kasuya-Yoshida inter-
action between impurities, which is caused by reflec-
tions.) We shall consider such a possible coupling [11]
in the long-wave limit. We emphasize that we shall con-
sider the direct interaction between quadrupoles chosen
in such a form to keep the exact integrability of the sys-
tem, i.e. that (maybe not very realistic from the exper-
imental viewpoint) Hamiltonian to use the exact solv-
ability of the total system, see below. The total Hamil-
tonian is H =

∑
j(Hj

hyb +Horb) +Hcond +Hint [12]. The
Hamiltonian of this direct impurity-impurity quadrupo-
lar interaction between the nearest-neighboring f -orbitals
has a complicated form which follows from the fact that
two-particle scattering matrices (TPSM) of electrons lo-
calized on orbitals satisfy Yang-Baxter relations (YBR)
mutually and with the TPSM of conduction and local-
ized orbitals, see below. In the simplest case of all elec-
trons being localized on orbitals it has the form of a
Takhtajan-Babujian SU(2)-symmetric Hamiltonian of ef-
fective quadrupolar moments Q [13].

The TPSM of conduction and f electron is diagonal in
the spin subspace. In the quadrupolar subspace it has the

form (for Λ � 1)

Ŝm,m′
q,q′ (k) = δm,m′δq,q′ + (q, m|q + m) (q′, m′|q′ + m′)

× {
iV 2(2Q + 1)/

[
k − θ − iV 2

(
Q + 1

2

)]}
P̂m,m′

q,q′ , (4)

where k is the quasimomentum. Here P̂m,m′
q,q′ =

δm,m′δq,q′ + δ−m,m′δq′,q+2m, |q| ≤ Q and the Clebsch-
Gordan coefficient (q, m|q + m) =

(
Q, q; 1

2 , m|Q 1
2 , (Q +

1
2 ), (q + m)

)
selects the way the impurity hybridizes

to “quadrupolar” degrees of freedom of itinerant elec-
trons [8]. The impurity (we call it “attractive”) can tem-
porarily absorb one conduction electron to form an effec-
tive quadrupolar moment Q′ = Q + 1

2 , i.e. the impurity
is mixed-valent and its wave function is a linear super-
position of two different non-magnetic (quadrupolar) con-
figurations. (The case with “repulsive” impurities which
mix states with Q and Q′ = Q − 1

2 , is also integrable.
For that case the TPSM differs from Eq. (4) by the sign
of the second term.) Those TPSM satisfy the YBR mu-
tually, with the TPSM between conduction electrons and
with the (possible) TPSM between localized neighboring
f electrons. The situation here is reminiscent of three pos-
sible TPSM of the Takhtajan-Babujian model.

The YBR are the necessary and sufficient conditions
for the integrability [14]. To remind, the TPSM Ŝ satisfies
the following YBR:

R̂12(k1 − k2)Ŝ1,imp(k1 − θ)Ŝ2,imp(k2 − θ) =

Ŝ2,imp(k2 − θ)Ŝ1,imp(k1 − θ)R̂12(k1 − k2), (5)

where R̂(k) is the TPSM of conduction electrons, and in-
dices for the matrices S show which particles scatter. Ma-
trices R̂ also satisfy the YBR

R̂12(k1 − k2)R̂13(k1 − k3)R̂23(k2 − k3) =

R̂23(k2 − k3)R̂13(k1 − k3)R̂12(k1 − k2), (6)

where indices enumerate scattering conduction electrons.
There is no direct coupling between conduction electrons
in our model [7]. However, the naive choice of the diagonal
scattering matrices for the TPSM of conduction electrons
does not satisfy the YBR. Correlations between conduc-
tion electrons are induced via the hybridization with lo-
calized electrons. The two-electron wave function (WF)
of conduction electrons can be written as a product of a
coordinate WF, a spin WF, and an “quadrupolar” WF.
The WF has to be antisymmetric under the exchange of
two particles. Hence, if spin and “quadrupolar” parts have
the same symmetry, the coordinate WF is antisymmetric
and vanishes if the coordinates of electrons coincide, so
that electrons cannot interact. Conducting electrons then
necessarily form a spin singlet and “quadrupolar” triplet
or a spin triplet and “quadrupolar” singlet. When applied
to a triplet (either in the spin or quadrupolar sector) WF
the corresponding TPSM yields one, while if it acts on a
singlet it gives rise to a phase shift. For the case of spin
and “quadrupolar” singlets the two phase factors cancel
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and there is no effective interaction between conduction
electrons. Hence the hybridization of conduction electrons
with the (interacting) electrons in 4f orbitals dynamically
correlates the motion of formers. That is why the TPSM
between conduction electrons obtains the form, cf. refer-
ences [10,15]

R̂(k) =

[
kÎσ + iV 2P̂σ

] [
kÎm − iV 2P̂m

]
[k2 + V 4]

, (7)

where Îm(σ) and P̂m(σ) are the identity and permutation
operators in the “quadrupolar” (spin) subspace.

The integrability of the model demands restrictions
on the values of quadrupole-quadrupole couplings, as
discussed above. In fact, it is possible to show (cf.
Refs. [10,16]) that the Hamiltonian of the direct inter-
action between localized electrons Hint has to be pro-
portional to θ2, to preserve the exact integrability. The
TPSM between conduction electrons have to satisfy the
YBR with Ŝ (and mutually) also to preserve the integra-
bility. They also factorize in spin and quadrupolar sub-
spaces, and in each subspace their form is similar to the
Takhtajan-Babujian TPSM, with opposite signs of inter-
action in those subspaces, like for R̂.

We emphasize that all four possible cases of the gener-
alized hybridization repulsive or attractive impurities with
spins S or quadrupolar moments Q in the free conduction
electron host are integrable, because TPSM between con-
duction electrons for a repulsive spin impurity, an attrac-
tive spin impurity, a repulsive quadrupolar impurity and
an attractive quadrupolar impurity can be chosen in such
a way to satisfy YBR with the TPSM between conduction
and localized electrons for all these four cases. Naturally,
YBR also imply that TPSM between neighboring local-
ized electrons can be constructed for all four cases, see,
e.g., [10,17] Our Bethe ansatz solution is similar to the sit-
uation of impurities in a host with the Hund-like exchange
interaction between conduction electrons [17]. Earlier we
studied the special case of S = 0 repulsive impurity in the
spin subspace in [10]. The general integrable case (in which
we consider any number of spin and quadrupolar degrees
of freedom of conduction electrons, and possible multiple
occupancies of orbitals) will be reported elsewhere [18].

To determine the spectrum and the eigenfunctions of
our model, we impose periodic boundary conditions and
solve the corresponding Schrödinger equations by means
of Bethe’s ansatz. The procedure is standard and we skip
details. The energies and eigenstates of our model are pa-
rameterized by three sets of rapidities: charge rapidities
{kj}N

j=1 (with N the number of electrons), spin rapidi-
ties {λα}M∗

α=1 (with M∗ the number of down spins), and
“quadrupole” rapidities {ξβ}n∗

β=1 (with n∗ the number of
electrons in the first orbital state). A magnetic field, H ,
and a lower-symmetric CEF, D, can lift the degeneracy of
orbitals, the latters becoming unequally populated. Eigen-
states correspond to solutions of the Bethe ansatz equa-

tions (BAE), obtained on a periodic interval of length Na:

eNi

2Q+1 (Λfj − θ′) eikjNa =
M∗∏
γ=1

e−1
1 (fj − λγ)

×
n∗∏

q=1

e1(fj − ξq), j = 1, . . . , N,

N∏
j=1

e1(λα − fj) = −
M∗∏
δ=1

e2(λα − λδ), α = 1, . . . , M∗,

eNi

2Q (ξβ − θ′)
N∏

j=1

e1(ξβ − fj) = −
n∗∏

γ=1

e2 (ξβ − ξγ) , (8)

where fj = kj/V 2Λ, θ′ = θ/V 2, en(y) = (2y − in)/(2y +
in), and β = 1, . . . , n∗. The energy is given by

E =
N∑

j=1

[
kj

(
1 + V 2fj

)
+ 2xπa2Q+1 (kj − θ)

]

− 2xπ

n∗∑
β=1

a2Q (ξβ − θ) , (9)

where an(y) is the Fourier transform of exp(−n|p|V 2/2).
The last two terms (with x = Ni/Na being the concen-
tration of 4f impurities) are caused by the added direct
coupling between quadrupolar moments of neighboring
4f electrons (and vanish if such a coupling is zero). With-
out direct interaction between impurities the energy of the
system does not explicitly depend on the characteristics
of impurities (θ, Q and Ni), i.e. terms, proportional to x
in equation (9) vanish. The fact that energies and eigen-
states are blind to the spatial positions of impurities is an
artifact of the integrability. However, real systems often
exhibit a large quasi-degeneracy of the states as function
of the distribution of hybridization impurities for stoichio-
metric compounds.

In the thermodynamic limit (Na, N, M∗, n∗ →∞ with
N/Na, M∗/Na and n∗/Na kept fixed) the solutions of
the BAE can be classified as: real charge rapidities cor-
responding to unbound itinerant electrons; pairs of com-
plex conjugated charge rapidities representing spin-triplet
quadrupolar-singlet pairs; spin bound states (λ-strings);
and quadrupolar bound states (ξ-strings) with the den-
sity functions (ρ(k) for unbound electrons, σ′(ξ) for pairs,
σn(λ) for spin strings, and φn(ξ) for quadrupolar strings
of length n). The thermal equilibrium is characterized by
the dressed energies of excitations. These functions satisfy
thermodynamic Bethe ansatz equations (TBAE), which
follow from equations (8, 9). TBAE satisfied by the den-
sity distributions (but not those for dressed energies) are
linear, so that contributions of conduction electrons and
localized electrons can always be separated. Integral equa-
tions for dressed energies are linear only in the ground
state. The number of electrons is

N = Na

[∫
dkρ(k) + 2

∫
dξσ′(ξ)

]
, (10)
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while the quadrupolar moment and magnetization are
given by

Q = NiQ + Na

[
1
2

∫
dkρ(k)−

∞∑
n=1

n

∫
dξφn(ξ)

]
,

M z = Na

[
1
2

∫
dkρ(k) +

∫
dξσ′(ξ) −

∞∑
n=1

n

∫
dλσn(λ)

]
,

(11)

respectively. Then one can obtain the valence, magnetic
and quadrupolar moment of localized electrons. To save
the space we shall not present here TBAE, referring to the
forthcoming report [18]. The most interesting case for this
kind of models is the ground state and low temperature
(T � 1) behavior. The inspection of the TBAE reveals
that in the ground state only five kinds of excitations have
Dirac seas (i.e. states with negative energies), namely,
unbound electrons, spin-triplet quadrupolar-singlet pairs,
spin strings of lengths 1 and 2, and quadrupolar strings of
length 2Q. The latters have their Dirac sea only for a sys-
tem with a direct coupling between neighboring f -orbitals,
i.e. their Dirac seas vanish for x → 0.

Let us first consider the case of a small concentration
of impurities, which is related to the limit x → 0 (Ni = 1)
and Λ → ∞ [10]. In this case the host has the proper-
ties of the gas of noninteracting electrons, and each im-
purity can be considered as isolated. In the case H = 0
we have mz

imp = 0, and, hence, the Dirac seas for spin
strings of lengths 1 and 2 are totally filled. Then the lat-
ters can be eliminated from equations for densities via a
Fourier transformation. It is the fusion procedure [9,10].
For D = 0 the impurity valence is (we used the regular-
ization scheme as, e.g., in [8] with the Fermi points ±B
of the dressed energy of pairs, Ψ(±B) = 0, related to µ)
nimp = (1/π)(tan−1[(B − θ)/V 2(Q + 1)] + tan−1[(B +
θ)/V 2(Q+1)]), i.e. it varies from zero to 1. For an empty
band the impurity valence is zero and it grows monotoni-
cally with B. θ measures the coupling to the host, i.e. for
|θ| � B the impurity is on resonance with the host, while
if |θ| � B it is off-resonance. Hence, nimp decreases mono-
tonically with increasing θ > 0. Also nimp decreases with
increasing Q. For Q > 1

2 the quadrupolar susceptibility
(it is connected [2] with the nonlinear magnetic suscepti-
bility, defined as the third derivative of the magnetization
with respect to the applied magnetic field) diverges as
D → 0. In the “non-magnetic Kondo” limit of large |θ|
(TK ∼ exp(−π|θ|) ∼ D � B/V 2) we have

Qimp = Q0

[
1± (LD)−1 − ln(LD)/(LD)2 + . . .

]
, (12)

where LD = | ln D/ATK | (A is a constant). Here, for
D � TK the upper sign and Q0 = Q are to be selected,
while TK � D � B/V 2 corresponds to the lower sign and
Q0 = Q + 1

2 . Notice that for large enough TK one needs
to take into account charge (mixed-valence) fluctuations,
too. For the lowest 4f2 doublet (Γ3), Q = 1

2 (which seems
to be the case for PrOs4Sb12 [1]), the ground state is a sin-
glet and the zero-field quadrupolar susceptibility is finite,
i.e. for small fields it is Qimp ∝ DT−1

K (plus corrections

due to the mixed-valence), reminiscent of the Fermi-liquid-
like behavior with the heavy mass. The expansion of the
free energy and the dressed energies yields for Q = 1

2 the
Curie-like quadrupolar susceptibility for T � TK (with
usual logarithmic corrections), but for T � TK it is finite.
For Q > 1

2 , the quadrupolar susceptibility is Curie-like
with a Curie constant corresponding to an effective mo-
ment Q at low T and to a free moment Q+ 1

2 at high T . The
specific heat of the non-magnetic impurity for Q = 1

2 is
Fermi-liquid like at low T , Cimp = πT/3TK. For higher T
in this case and for Q > 1

2 at T ∼ D the degeneracy of
the impurity gives rise to Schottky anomalies [19].

Next, consider the finite concentration of impurities
(i.e. we keep x and Λ finite). Pairs, pre-formed due to
the hybridization, are related to superconducting fluctu-
ations. For D = 0 the band of strings is completely filled
and yields zero total quadrupolar moment, i.e. the im-
purity quadrupolar moments are all compensated due to
the antiferroquadrupolar correlations. The dressed energy
of quadrupolar strings κ2Q(ξ) is negative (i.e. occupied)
for all ξ if x > 0, but identically zero and, hence, empty
for x → 0. The point x → 0 is then singular. The behav-
ior of the model in the dilute limit x → 0 is completely
different to that for finite concentrations. Observe that if
impurities do not directly interact with each other, they
are not compensated and the limit x → 0 is not singular.
For D 6= 0 the large |ξ| tails of κ2Q(ξ) are positive and not
occupied, giving rise to a finite quadrupolar moment. For
H = D = 0 the quadrupolar and magnetic susceptibil-
ities are constant. Quadrupolar fluctuations renormalize
dressed energies for pairs and unpaired electrons, increas-
ing the respective energies. The value of the gap for un-
bound electrons, ∆, i.e. one-half of the smallest energy
required to destroy a pair, is:

∆ = [Ψ0(B)− 2πxa2Q+2(B − θ)]
[
1
2 −G0(0)

]
+ 2πxa2Q+2(θ) −G0 ∗ [Ψ0(ξ) + 2πxa2Q+2(ξ − θ)] , (13)

where ∗ denotes convolution, 2ΛΨ0(ξ) = 2(4ξ + Λ)2 − Λ2,
and

Gn(x) = (2π)−1

∫
dp

exp
(−ipx− n|p|V 2/2

)
2 cosh (V 2p/2)

· (14)

The gap implies the critical CEF value Dc = 2∆ (and,
thus, the related critical H) at which the gap is closed.
The effect of impurities on the gap depends on the value
of θ: For a given B/V 2 the gap decreases for small θ/V 2

and increases for larger values of θ/V 2. The gap increases
with x when the impurities are off-resonance, being weakly
coupled to itinerant electrons. Here impurity quadrupolar
moments compensate each other, so that they do not have
a destructive influence on pairs. The increase of ∆ with
x is the consequence of an enhanced density of states of
electrons due to the presence of impurities. For small θ,
i.e. on-resonance case, the coupling between impurities
and host is strong, reducing the gap with x until a critical
concentration xcr at which the gap is closed.

There is a reminiscence of co-existence of supercon-
ducting and quadrupolar fluctuations. For x < xcr pairs
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Fig. 1. The low concentration part of the ground state phase
diagram θ–x of the considered system with the finite concen-
tration of impurities.

coexist with antiferroquadrupolar fluctuations. On the
other hand, for x > xcr the gap is closed and the band
of unpaired electrons is gradually populated, but the
quadrupolar spontaneous moment of unpaired electrons
is compensated by a weak quadrupolar component of the
impurity 2Q-string band. For x > xF > xcr the large |ξ|
tails of the dressed energy κ2Q are positive. This intro-
duces holes into the 2Q-string band and, hence, induces a
ferroquadrupolar component into the system.

Consider now the itinerant ferroquadrupolar compo-
nent for x slightly larger than xcr. Then the square root
dependence

√
x− xcr arises from the van Hove singular-

ity of the 1D band. On the other hand, the zero-field
quadrupolar moment is proportional to x − xF . The ef-
fect of the CEF is to gradually break up the antiferro-
quadrupolar frustration, weaken the pairs, and introduc-
ing this way a hole population in the band of 2Q-strings
and, hence, a nonzero quadrupolar moment.

The low concentration part of the ground state phase
diagram of the considered system can be sketched as fol-
lows, see Figure 1. At low values of θ (in resonance) and
x and for large θ (out of resonance) for any concentration
the Dirac sea of 2Q-strings is totally filled, and there ex-
ists the Dirac sea of pairs (the filling of which depends
on the number of electrons in the system). In this phase
(A in Fig. 1) superconducting and antiferroquadrupolar
fluctuations co-exist, and there are no unbound electron
excitations. This phase is divided from other phases by
a line of the second order quantum phase transition. On
the other hand, for small values of θ and xcr < x < xF

there appears a phase (B in Fig. 1) in which Dirac sea for
unbound electron excitations appears together with the
totally filled Dirac sea for 2Q-strings and pairs. It turns
out that in this phase the total quadrupolar moment of
the system is zero. For in-resonance values of θ, but for
xF < x the system is in the phase (C in Fig. 1) with
co-existing superconducting and ferroquadrupolar fluctu-
ations, i.e. spontaneous quadrupolar moment appears. All
lines of quantum phase transitions are connected with the
van Hove singularities of one-dimensional bands of low-

lying excitations (here unbound electron excitations and
2Q-strings).

In conclusion, in this paper we have studied the model
of localized 4f2 interacting electrons with low-energy
non-magnetic multiplets, which hybridize with conduction
electrons. Our exact solution reveals several remarkable
properties. For a small concentration of non-magnetic,
but related to a quadrupolar moment, impurities the en-
hancement of the effective electron mass persists, while
the hybridization with the finite concentration of such im-
purities dynamically induces the creation of spin-triplet
quadrupolar-singlet pairs, a spin gap of unbound conduc-
tion electrons, and quadrupolar moments. As the con-
centration increases for strong quasi-degeneracy of the
mixed configurations of 4f orbitals, the gap can be closed,
signaling a quantum phase transition to a uncompen-
sated quadrupolar-ordered phase (coexisting with super-
conducting fluctuations). Hence, our study describes how
the hybridization between two almost degenerate non-
magnetic (but related to quadrupolar moments) config-
urations of 4f2 orbitals and conduction electrons can
produce both heavy electron mass and pre-formation of
superconducting fluctuations of conduction electrons and
quadrupolar ordering. Notice that the pairing between
conduction electrons is caused by the hybridization be-
tween them and localized 4f2 electrons. The 3D interac-
tion must produce superconducting and/or quadrupolar
ordering of these pre-formed fluctuations. It turns out that
a fully non-perturbative analysis of the relevant physics of
heavy electrons and pre-formation of superconducting and
quadrupolar ordering is allowed from the grounds of the
same model. However, we emphasize again that our exact
solution has only several features, reminiscent of Pr-based
skutterudites, and cannot, naturally, describe their total
behaviour.

This study was supported by the Swedish Foundation for In-
ternational Cooperation in Research and Higher Education
(STINT).
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